
4% . 9

NASA Conaxtor

ICASE RESORT NO. 87-38

ICASE
THE PISCES 2 PARALLEL PROGRAMMING ENVIRONMENT

Terrence W. P r a t t

Contract No. NAS1-18107
July 1987

(L A S A - C B - 1 7 8 3 2 7) T B E F I S C E S 2 PABALLEL Pr87-26573
€ h G G C A B B I I G E E V I G C & B E L T F i n a l EeFort (NASA)
16 p Avail: bZLS HC AOZ/Bk A01 CSCL 09B

Unclas
63/61 om7t3a2

INSTITUTE FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton. Virginia 23665

Operated by the Universities Space Research Association

NatitmalAeronauticsand
Space Administration

Hampton,Wrginia 23665

b

t

THE PISCES 2 PARALL,EL PROGRAMMING ENVIRONMENT

Terrence W. Pratt

Virginia Institute for Parallel Computation
Department of Computer Science

University of Virginia
Charlottesville, VA 22901

and

ICASE
NASA Langley Research Center

Hampton, VA 23665

Abstract

PISCES 2 is a programming environment for scientific and engineering computations on MMD
parallel computers. It is currently implemented on a Flexible FLEW2 at NASA Langley, a 20 processor
machine with both shared and local memories. The environment provides an extended Fortran for appli-
cations programming, a "configuration" environment for setting up a run on the parallel machine, and a
run-time environment for monitoring and controlling program execution. This paper describes the overall
design of the system and its implementation on the FLEX/32. Emphasis is placed on several novel
aspects of the design: the use of a carefully defined virtual machine, programmer control of the mapping
of virtual machine to actual hardwaxe, "forces" for medium-granularity parallelism, and "windows" for
parallel distribution of data. Some preliminary measurements of storage use are included.

This paper will appear in the Proceedings of the 1987 International Conference on Parallel Pro-
cessing, St. Charles, Illinois, August 1987.

This wok supported in part by NASA Grant 1-467-1 and Virginia CIT Grant INF-86-001 to the
University of Virginia and in part by NASA contract NAS1-18107 while the author was in residence at
the Institute for Computer Applications in Science and Engineering (ICASE) at NASA Langley Research
Center.

i

1. THE PISCES PROJECT

The PISCES (Parallel Implementation of Scientific Computing Environments) project has as its
central goal the design of an environment for programming parallel machines that can be implemented
with reasonable efficiency on a wide variety of MIMD parallel computers. Scientific and engineering
applications axe the primary target for the programming language parts of the environment.

The history of our use of sequential computers shows that the programming languages and environ-
ments tend to be more stable than the underlying hardware architectures. For example, in the scientific
community, users have required Fortran and Fortran-based environments for each new generation of
supercomputer. Over a period of two decades, the underlying hardware has changed dramatically, but the
programming environment has changed only slowly. Although it is always desirable to get maximum
performance from the available hardware, most users find that acceptable performance within a familiar
and convenient programming environment is preferable to maximum performance that requires substan-
tial additional programming effort.

In parallel programming we can expect the hardware architectures to change radically and often as
the field matures and more vendors offer parallel machines. For the applications programmer it is desir-
able to have a programming environment that changes more slowly, so that large applications codes do
not have to be reprogrammed frequently.

The goal of the PISCES project is to provide such a programming environmnent. The environment
should satisfy several criteria:

1. New scientific applications should be programmable conveniently in the environment.
2. Existing scientific codes should be portable to the parallel machine without complete reprogram-

ming.
3. The environment should be implementable with reasonable efficiency on a wide range of archi-

tectures.
Thus programming convenience and reasonable performance across a range of different architec-

tures are the primary goals of the project. The PISCES environments are based on Fortran 77 and UNIX
as the underlying sequential language and operating system. For the engineering programmer, the
PISCES environments are intended to be an evolution from familiar environments on conventional
machines,

PISCES I , 2, and 3
The first PISCES environment, PISCES 1 [l] was implemented in 1984 on a VAX under UNIX.

Parallelism was simulated using Unix pmsses . This implementation was ported to a network of Apollo
workstations [2], but the system was never put into general use.

The PISCES 2 environment is implemented on a true MIMD parallel machine, the Flexible
FLEXB2, a twenty p m s s o r machine with both shared and local memory. This system is the subject of
this paper.

A PISCES 3 environment is planned for a hypercube machine such as the Intel iPSC or the
NCubehn. The PISCES 3 system will emphasize parallel VO and data base access.

2

2. MAIN CONCEF'TS OF PISCES 2

The PISCES 2 environment is designed to provide to the user a clearly defined virtual machine
which is carefully differentiated from the underlying actual machine -- the vendor's hardware and operat-
ing system. The virtual machine and its surrounding programming environment provide a stable founda-
tion for applications programming across a variety of underlying actual machines.

Several of the major features of the PISCES 2 environment are discussed in the following sections.
Briefly summarized, the PISCES 2 environment provides:

1. A virtual machine that is relatively independent of the underlying hardware architecture.
2. Multiple grain-sizes of parallel operation within the virtual machine.
3. A clustered virtual machine architecture.
4. Applications programs organized as dynamic sets of tasks that communicate via asynchronous

5. An operating system organized as a static set of tasks running in each cluster.
6. A communication topology that can change dynamically during program execution.
7. "Forces" -- p u p s of tasks running the same program text -- that provide loop body and

8. "Windows" -- a form of generalized pointer -- that provide parallel data partitioning and remote

9. Programmer control of the mapping of the virtual machine to the particular available hardware

message passing.

segment-level parallelism; forces communicate via shared variables.

data access for arrays.

before each run of a program.

3. RELATED WORK

Most programming environments for parallel machines are specific to the particular machine. Rela-
tively few projects have considered environments that might be implemented on a variety of machines.
Snyder's POKER environment [3] is one of the best known. Although POKER was originally conceived
as a convenient way to program a particular machine, the CHiP (which was never built), it is now con-
sidered more as a virtual machine environment that can provide a convenient programming interface to
machines as different as the PRINGLE and the Cosmic Cube [4]. In contrast to POKER, PISCES 2 has a
less graphical user interface. PISCES 2 provides communication using both shared memory and message
passing as well as several granularities of parallel operation.

Dongarra and Sorenson's SCHEDULE [SI is another Fortran-based environment for writing tran-
sportable parallel programs. SCHEDULE is a package of routines that provide an interface between For-
tran programs and a parallel machine. The Fortran routines communicate with shared variables. The pro-
grammer defines the dependency relations between the routines (via SCHEDULE calls), and then
SCHEDULE maps the program onto the available hardware in an appropriate way for parallel execution.
In contrast, PISCES 2 expects the programmer to control the mapping of program onto the available
hardware, by first mapping the algorithm onto the PISCES 2 virtual machine, and then mapping the vir-
tual machine onto the hardware.

3

4. THE PISCES 2 VIRTUAL MACHINE

@ne of the central aspects of the PISCES design is the careful attention to the definition of the vir-
tual machine defined by the software. Of course a l l software systems "virtualize" the underlying
hardware to a greater or lesser degree, but the precise definition of the resulting vimal machine is not
usually emphasized.

It is our view that the users of software systems in most cases understand those systems in terms of
the virtual machines they define. Thus it is important to make a definition of the virtual machine an
explicit and central part of the system definition and documentation.

The major details of the PISCES 2 virtual machine are outlined in the sections below; see [6] for a
complete description. The user of the PISCES 2 system is encouraged to think in terms of the virtual
machine when designing programs. When an application is run with PISCES 2 on a particular hardware
system, the program can be "performance tuned" to some degree by co rn1 of the mapping of virtual
machine to hardware (see Section 9 below).

5. ARCHITECTURE OF THE VIRTUAL MACHINE

The PISCES 2 virtual machine consists of a set of clusters. Each cluster represents an abstract group
of pmss ing resources, such as pmessing elements, memories, or disks. Clusters need not be homo-
geneous -- some clusters may have moxe resources than others or different kinds of resources.

On the FLEW32 the particular mapping of clusters onto actual processing resources can be varied
by the programmer between runs of each program, within limits. The basic mapping is to use one FLEX
PE, its local memory, and a block of shared memory as a cluster. Additional PE's can be added to a clus-
ter to provide more processing resources for running "forces". The programmer can choose to use
between 1 and 18 clusters for a particular run of a program. Details a~ given in Section 9 below.

An applications program appears as a set of tasks. Each cluster provides a finite set of slots in
which tasks can run. When a task is initiated, it is initiated in a particular cluster. An available slot is
found in the cluster. If a l l slots are full, then the task must wait to be initiated until a slot is free.

The operating system is represented as a set of "controller" tasks that run in slots in the clusters.
Two kinds of controllers are currently used:

1. Task controllers. Responsible for initiating, terminating, and monitoring the operation of user
tasks within their cluster.

2. User controllers. Responsible for control of communication with user terminals that are directly
accessible from their cluster.

If a local disk is available in a cluster, then a third type of controller would be used (the FLEX at
NASA has no local disks):

3. File controllers. Responsible for control of access to the files on disks directly accessible from
their cluster.

User tasks communicate with each other and with the controller tasks via asynchronous message
passing. The basic architecture of the virtual machine is diagrammed in Figure 1.

Multiple Grain Sizes of Parallel Operation
Applications program typically can make use of several different grain sizes of parallel operation:
1. Tasks (large program units) that run in parallel.

4

2. Subprograms that run in parallel.
3. Code segments that run in parallel (e.g., loop iterations).
4. Arithmetic operations that run in parallel (e.g., vector or fine-grained data flow operations).
The PISCES 2 design attempts to provide several different grain sizes. Simulation of parallel

operation of a particular grain size on hardware that does not support that type of parallelism (for exam-
ple, simulation of fine-grained parallelism on an architecture such as the FLEX) may be prohibitively
inefficient and expensive. For the PISCES 2 design, we have chosen to provide parallel operation at the
following levels, each of which can be implemented with reasonable efficiency on a FLEX-class
machine:

1. All clusters operate in parallel.
2. Within a cluster, tasks run in parallel.
3. Within a task that has split into a "force", code segments run in parallel, including parallel loop

On the FLEX, 1. and 3. are implemented by means of parallel processes on separate PE's; 2. is
iterations, parallel subprogram executions, and parallel execution of arbitrary code segments.

implemented by multiprogramming a single PE.

6. TASK INITIATION AND COMMUNICATION

When an applications program begins execution, only the controller tasks a= running in the
PISCES 2 virtual machine. The user initiates a top-level task. This task typically initiates other tasks.
Lower-level tasks are dynamically initiated and terminated as the program runs.

I
The statement to initiate a task has the form (in Pisces Fortran):

ON <cluster, INITIATE <tasktype> (argument list>)

The <clusten specifies where the initiating task wants the new task to be scheduled for execution. It may
take any of the forms:

CLUSTER <number> -- run the new task in the specified cluster
ANY -- run in a system-chosen cluster
OTHER -- run in another cluster, not this one
SAME -- run in this cluster

The applications program thus controls dynamically the spreading of the various tasks among the
clusters of the virtual machine. Any number of tasks of the same tasktype may be initiated as needed.

Execution of an INITIATE statement by a task does not directly cause initiation of the new task -- it
simply causes a message to be sent to the task controller of the specified cluster. The task controller
determines when to actually initiate the new task. If no slots are available in the cluster, the task con-
troller will hold the initiate request until another task terminates.

Communication Topology
Communication among tasks is controlled by a simple rule: any task may send a message to any

other task for which it has a taskid. Every task is given a unique taskid when it is initiated. The taskid
consists of <cluster number, slot number, unique numben where the unique number distinguishes tasks
that have run at different times in the same slot.

5

When a task is first initiated, it is automatically given copies of several taskid's: its parent (the user
task that requested its initiation), its self id, and the id's of all controller tasks in all clusters. These are
the only tasks to which it can initially send messages. Thus the initial communication topology among
the user tasks is basically a root-directed tree structure, with each task only able to talk to its parent.

The communication topology grows and changes dynamically as tasks run. in the following way. A
taskid is a data value (just like an integer). Taskid's can be stored in variables and arrays (of type
TASKID), and passed as arguments in messages or parameter lists. Also, whenever a task receives a
message from another task, the taskid of the sender is included as part of the message. The receiving task
can store this taskid and use it to send a response to the sender.

A typical PISCES 2 program begins with an initial phase in which the first group of tasks are ini-
tiated, followed by an exchange of messages containing taskid's to establish the communication topology
for the first part of the computation. If there is a second part of the computation with a different commun-
ication topology, then there may be a later point where additional tasks are initiated and another round of
messages sent to exchange taskid's.

Sending Messages
The Pisces Fortran statement for sending a message is:

TO <taskid> SEND <message type> (argument list>)

where <taskid> may be:
PARENT
SELF
SENDER
USER
<variable or array element of type TASKID>

TCONTR <clusten

-- send message to parent
-- send message to myself
-- send message to sender of last message received
-- send message to user at terminal

-- send message to the task whose taskid is stored in the variable
-- to task controller in <cluster>

Messages may also be broadcast to a particular cluster or to all clusters:

TO ALL [CLUSTER <numben] SEND unessage type> (<args>)

Receiving Messages
Message communication is asynchronous. Messages are queued in an in-queue for the receiver in

order of arrival. The receiving task determines when, if ever, a particular message is "accepted", by exe-
cuting an ACCEFT statement of the fonn:

ACCEPT <number> OF
unessage typeb
unessage type2>
...

DELAY <time value> THEN

END ACCEPT
<Statement sequence>

When such a statement is executed, messages of the specified types are taken from the in-queue of the
receiver and processed, as explained below, until the specified number of messages has been processed.
If the messages have not yet arrived, the task waits, Instead of counting the total number of messages of
all types, the statement may specify counts for each message type individually, or may specify "ALL" to
indicate that all messages of that type that have been received should be pmssed .

6

Waiting for messages is controlled by the timeout value in the DELAY clause. The DELAY clause
can be omitted, and a system provided timeout value will be used. If the wait is longer than the desig-
nated timeout, the task continues execution, starting with the statement sequence given in the DELAY
clause (or with a system-generated "timeout" message).

Processing Messages
A task may choose to treat any message type as either a "signal" type or a type with a "handler".

The SIGNAL/HANDLER distinction is made in a declaration at the beginning of each tasktype or sub-
program that includes an ACCEPT statement.

A "signal" message type is simply counted when it is accepted, and the message is deleted from the
in-queue. A message type with a "handler" is processed by a HANDLER subroutine before it is deleted
from the in-queue. The handler subroutine has the same name as the message type. It is executed when a
message of that type is accepted. Any arguments that anive in the message are provided to the handler as
arguments when the handler is called.

Because the receiver of a message decides how to interpret the message contents (as a signal, or to
be handled in a particular way), PISCES-style message passing is similar to message passing in many
"object-oriented" systems [7]. The same message sent to two different tasks can be interpreted in widely
different ways by the recipients.

7. FORCES AND SHARED VARIABLES

A second, more fine-grained, form of parallel operation is provided through the force concept
developed by Hany Jordan [8]. A force, in Jordan's concept, is a set of simultaneously initiated tasks, all
of the same tasktype. The members of a force are guaranteed to run concurrently on different PE's. Force
members communicate through shared variables and synchronize through barriers and critical regions.
Loop iterations are partitioned among force members, either through prescheduling or self-scheduling.

An important feature of the "force" concept is that the program is written without knowledge of the
number of members that a force may have. The number of parallel tasks in a force is determined when
the program is executed, not when the program is written. The same program text may be executed
without change by a force of any number of members -- only the performance of the program will change,
not its semantics.

Within the PISCES 2 virtual machine, these concepts appear as follows:
1. Any task may split into a force, by executing the statement "FORCESPLIT". The number of

replicated copies of the task (the force members) and the PE's used to run these force members are deter-
mined by the programmer before each run (part of the mapping of the virtual computer to actual computer
described below).

2. Before execution of a FORCESPLIT, a task executes as an ordinary task. After a FORCESPLIT,
the original task continues as the "primary" force member, and the new force members begin execution
from the point of the FORCESPLIT.

3. A tasktype definition that contains a FORCESPLIT statement may also use the following Pisces
Fortran declarations and statements:

a. SHARED COMMON blocks. An ordinary Fortran COMMON block, but allocated in shared
memory so that all force members see the same block. (Ordinary COMMON in a tasktype is only shared
among an individual task and its subprograms.)

b. LQCK variables. Variables whose values are "locks" that may be used to control entry and exit of
CRITICAL statements.

7

c. BARRIER statements. Statements of the form:
BARRIER

END BARRIER
<statement sequence>

All members of the force pause on reaching the start of the banier. When all have anived, the primary
force member executes the statement sequence, and then all force members continue.

d. CRITICAL statements. Statements of the form:
CRITICAL <lock variable>

END CRITICAL
<statement sequence>

When a force member reaches this statement, the lock value of the variable is fetched. If "unlocked", it is
"locked" and the statement sequence is executed; Otherwise the force member waits until the lock value
becomcs unlocked before locking it and proceeding into the critical region.

e. PRESCHED (ul(i SELFSCHED loops. Fortran DO loops that are designated for parallel execu-
tion. PRESCHED indicates that in a force of N members, each member should take 1/N of the loop itera-
tions. The Ith force member takes iterations I, N+I, 2*N+I, etc. SELFSCHED indicates that each force
member takes the "next" iteration when it anives at the loop. After completing one iteration, a force
member takes the "next" iteration of those remaining, etc., until all iterations are complete.

f. Parallel Segments. Blocks of statements that can be executed in parallel. The statement has the
form:

PARSEG

NEXTSEG

NEXTSEG

ENDSEG

<statement sequence 1 >

<statement sequence2>

...

The ILh force member executes the Ith, N+I, 2*N+I, etc. statement sequences, just as for a PRESCHED
DO loop.

8. PARALLEL DATA PARTITIONING WITH 'WWDOWS'

When a parallel program operates on large arrays of data, ordinarily the arrays must be partitioned
and the appropriate data transmitted to each of a set of processing tasks. The "owner" of the data may be
another task or the data may reside on secondary storage in the file system.

The action of partitioning the data is logically separate from the action of processing one of the par-
titions, and often different tasks are involved. A common program structure is to have one high-level task
that is responsible for pattitioning the data. This task then allocates the partitions to lower-level tasks that
perform the processing steps. These lower-level tasks may themselves partition the data further and
create new "slave" sub-tasks to do the processing. In such a setting, it is undesirable to have the array ele-
ments actually flow into and out of the partitioning tasks, because no processing is done in these tasks.

PISCES 2 provides a new data type "window" to represent a partition of an array. The window con-
cept was developed originally by Piyush Mehmtra [9]. A window in PISCES 2 is a type of generalized
pointer that points to a rectangular subregion of an array that is "owned" by another task. Any task may
create windows on one of its local arrays. These windows a= data values that may be passed in messages

8

and stored in variables (of type WINDOW). The window value contains the taskid of the owner, the
address of the array, and a descriptor for the subarray. Another task may read or write the s u b m y visi-
ble in the window, by sending a message to the owner. Another task may also "shrink" the window to
point to a smaller subarray.

For parallel data partitioning, windows are a useful mechanism. The owner of the data may do the
top-level partitioning by creating windows on appropriate partitions. These windows are sent to sub-tasks.
If the subtask chooses to process the data, then it reads a copy of the data visible in the window into a
local array. If the subtask chooses to further partition the data, then it makes several copies of the win-
dow, shrinks each copy appmriately, and sends the modified windows out to its sub-tasks. The array
values only need be transmitted once, to the task assigned the actual processing of the data.

Windows also provide a uniform access method for large arrays on secondary storage. The "owner"
in this case is the file controller which controls access to the file system. A task can q u e s t a window on
such an array, and the file controller can manage any parallel readhrite requests for overlapping sections
of an array. More detail on the window concept is provided in [11.

9. MAPPING VIRTUAL MACHINE TO HARDWARE

In PISCES 2 the programmer controls the hardware resources that are allocated to the execution of
user tasks in each cluster. There are several parts to this mapping. A particular mapping is called a
configuration. Configurations are created within the the PISCES 2 environment via a series of menus.
Configurations may be saved on files and reused or edited as desired for later runs.

In creating a configuration on the FLEX/32, the programmer chooses:
1. How many clusters to use and their numbers.
2. "he "primary" FLEX PE for each cluster. A single FLEX PE is designated as the primary PE for

a cluster. All user tasks that run in a cluster will be run on this PE. except for force members initiated at a
FORCESPLIT.

3. The "secondary" FLEX PE's to run force members for a cluster. Any subset of the FLEX PE's
may be designated to run force members. Whenever a task within the cluster executes a FORCESPLIT,
the size of the resulting force is determined by the number of secondary PE's allocated to the cluster.

4. The number of slots in each cluster that are available to run user tasks. The number of slots
corresponds to the number of user tasks on the FLEX PE that may be simultaneously time-sharing the
CPU. "Controller" tasks will also be sharing the CPU. If the PE is also a secondary PE for one or more
clusters, then force members from these other clusters may also be sharing the CPU. Thus the number of
slots is a partial control on the degree of multiprogramming allowed on a PE.

Example of a Mapping
On the FLEX, PE's 1 and 2 run only Unix and are not available to run PISCES user tasks. The user

may use any of the remaining 18 PE's, numbered 3-20, for PISCES tasks. The user might choose to use
these 18 PE's as follows:

a. Write the Pisces Fortran program so that it runs on four clusters, numbered 1-4.
b. Map clusters 1-4 to FLEX PE's 3-6, and allocate 4 slots in each cluster.
c. Use PE's 7-15 to run forces for both clusters 3 and 4. Each task in either cluster that executes a

FORCESPLIT will cause a new copy of the task to start up on each of the PE's 7-15. The maximum
number of simultaneous tasks that might be running on one of these PE's is equal to the sum of the slots
allocated in both clusters, 4+4=8 here.

9

8

d. Use PE’s 16-20 to run forces for cluster 2.
e. Allocate no secondary PE’s to run forces for cluster 1. A task executing a FORCESPLIT in clus-

ter 1 will then cause no parallel splitting.
The configuration setup that defines this mapping may be saved. Experimentation with different

mappings from PISCES clusters to hardware resources is straightforward, by editing and saving several
variants of a configuration mapping.

10. PISCES FORTRAN

Applications programs are written in an extended Fortran 77 called Pisces Fortran. The extensions
allow the user to control the PISCES 2 virtual machine. A prepmessor converts Pisces Fortran programs
into standard Fortran 77, with embedded calls on the Pisces run-time library. The Unix Fortran compiler
then compiles the preprocessed programs to generate object code. Standard Fortran 77 subprograms may
be included as needed. No changes are required to Fortran subprograms that run sequentially on a single
PE (as part of a larger Pisces Fortran task).

A Pisces Fortran program consists of a set of tasktype definitions. Within a tasktype, ordinary For-
tran and the Pisces extensions are intermixed as needed. The major Pisces extensions have been
described in the sections above. A complete description is provided in [6].

11. FLEX IMPLEMF,NTATION STRATEGY

The Flexible FLEX/32 at NASA’s Langley Research Center has the following hardware characteris-
tics:

20 processors, each a National Semiconductor 32032.

1 Mbyte of local memory on each processor.

2.25 Mbyte of shared memory, accessible by all processors.

Disks attached to processo~s 1 and 2.

The FLEX software organizes the system as follows (in the NASA configuration):
PE’s 1 and 2 run Unix only, and maintain the file system for all PE’s.
PE’s 3-20 run MMOS, a simple Unix-like kernel that provides multiprogramming, I/O to files and

terminals, storage allocation, and a few other services to user programs.
The Unix PE’s are shared by multiple users in the usual way. The MMOS PE’s are treated as an

allocatable resource and only one user is given access at a time. PE’s are rebooted after each user pro-
gram completes execution. User requests to use the MMOS PE’s are queued in the UNIX PE if the
MMOS PE’s are in use.

The shared memory is not accessible (easily) by programs on the Unix PE’s.
The user may select any subset of the MMOS PE’s for loading; all selected PE’s are loaded with the

same code, which includes the MMOS kernel and all user code.

10

Shared Memory Use
The FLEX shared memory is used by the PISCES run-time system in three ways:
1. A table is maintained with entries for each cluster and each slot within each cluster. Each run-

ning task is represented by a record that contains the "state" information for the task, including pointers to
the task's in-queue, free space lists, trace flags, and so forth.

2. An area is used for message passing. Message queues are represented as linked lists. Messages
consist of a header and a list of packets containing the arguments. Since a message may remain in a
task's in-queue indefinitely, this area is maintained as a heap with explicit allocatioddecallocation as
messages are sent and accepted.

3. An area is used for SHARED COMMON blocks declared in tasks that split into forces.
SHARED COMMON blocks are allocated statically in shared memory. The other areas are allo-

cated dynamically and depend on the particular PISCES configuration defined by the user and on the
number of active tasks and messages in the system.

I

Within this general system organization the PISCES 2 system runs as "just another program". The
PISCES 2 system has four main pieces:

1. The Preprocessor. A separate Unix program that translates Pisces Forvan into standard Fortran
77 with calls on routines in the Pisces run-time library. AU program development is done on a Unix PE,
using the usual Unix editors and other software.

2. The PISCES Configuration Environment. When the user has created and successfully compiled
his Pisces Fortran tasktype definitions (including all handler subroutines, etc.), then the command
"pisces" brings up the PISCES configuration environment. This environment provides a series of menus
that allow the user to build or edit a configuration for a particular m. A menu also drives the creation of
an appropriate MMOS loadfile for the run. The configuration includes an execution time limit, trace set-
tings for execution monitoring, and related information, in addition to the virtual machine to actual
machine mapping described above.

3. The PISCES Execution Environment. If the user requests program execution from the
configuration environment, the loadfile is downloaded to the appropriate set of MMOS PE's, and control
transfers to the PISCES execution environment, a program that runs on the "main" MMOS PE. This pro-
gram displays a menu with the options:

0
1
2
3
4
5
6
7
8
9

TERMINATE THE RUN
INITIATE A TASK
KILL A TASK
SEND A MESSAGE
DELETE MESSAGES
DISPLAY RUNNING TASKS
DISPLAY MESSAGE QUEUE
DUMP SYSTEM STATE
DISPLAY PE LOADING
CHANGE TRACE OPTIONS

Each menu choice leads to a routine that collects any additional information needed and then takes the
desired actions.

4. The PISCES Run-time Library. The run-time library maintains the Pisces system state in shared
memory and handles all the activities related to parallel operation such as message passing, force split-
ting, locks, and so forth. Calls to the MMOS kernel are used for only a few activities, primarily process
creation and termination, input/output to the terminal, and swapping the CPU among ready processes.

'

11

12. TRACING PROGRAM EXECUTION

Monitoring and timing the execution of a portion of a parallel program is simplified by a set of
features for automatic tracing of significant events during execution. The user may choose from the fol-
lowing list of types of events to trace:

Task initiation.
Task termination.
Message send.
Message accept.
Lock a lock
Unlock a lock.
Enter a barrier.
Force split.

For each type of event, a trace line of output may be displayed or written to a file. The trace line
includes:

Type of event.
Taskid of relevant task (or tasks).
Clock reading (PE number and "ticks" count).
Other relevant information for the event type.

Tracing may be turned on and off for each type of event and each task. Display of trace output on the
screen allows the user to monitor execution visually. Sending trace output to a file allows the user to
study trace information and make timing analyses off-line.

13. STATUS AND PERFORMANCE

The PISCES 2 system as described above is currently running on the NASA Langley FLEW2,
with the exception of the window constructs, which are still being implemented. No detailed timing
measurements have yet been taken.

The storage overhead is minimal: the PISCES 2 system uses less than 2.5% of each PE's local
memory (for system code and data) and less than 0.3% of shared memory (for system tables). Storage
used for message passing is dynamically recovered and reused. Thus the amount of shared memory used
for message passing only becomes significant when large numbefs of messages (or very large messages)
are sent and left waiting in a task's in-queue without being accepted.

14. CONCLUSIONS

The PISCES 2 environment provides a relatively rich environment for experimentation with the
structure and performance of parallel scientific programs. It is too early to report on the effectiveness and
convenience of the environment for users with real applications. The programming styles that develop
when the system is put into general use will be particularly interesting to understand. Given both shared
variables and message passing for communication, and both tasks and forces for program structuring,
what program structures will be found most appropriate for particular classes of problems?

Polting a large existing finite element/structural analysis code to the FLEX within the PISCES 2
environment is one initial application to be considered. Our goal will be to "parallelize" this code, using

12

the Pisces Fortran constructs, with a minimum of effort, and then measure the effectiveness of the system
performance on the FLEX.

The PISCES 2 virtual machine is not similar to the FLEX in many respects, and several of the major
features it provides to the programmer have no direct analogue in the FLEX hardware or operating system
(for example, forces, asynchronous message passing). As Jones and S c h w a [lo] pointed out several
years ago, a software-defined virtual m a c h e that is markedly different from the underlying hardware
may mask the crucial performance realities of the hardware from the programmer. On a parallel machine
this is of particular concern. By providing an environment in which the programmer can see "through
the virtual machine to its mapping onto the hardware, and in which the major parts of this mapping are
under programmer control, we hope to understand better what performance penalties are inherent in this
software organization.

REFERENCES

Pratt, T. "PISCES: An Environment for Parallel Scientific Computation," IEEE Software, July

Fitzgerald, N. Implementation of a Parallel Programming Environment, M.S. Thesis, Univ. of Vir-
ginia, May 1985.
Snyder, L. "Parallel Pmgramming and the POKER Programming Environment," Computer, 17, 7,

Snyder, L. and D. Socha, "Poker on the Cosmic Cube: The First Retargetable Parallel Programming
Language and Environment." Proc. 1986 ICPP, 628-635.
Dongarra, J. and D. Sorensen "SCHEDULE: Tools for Developing and Analyzing Parallel Fortran
Programs," Tech. Memo. 86, Argonne National Lab., November 1986.
Pratt, T. PISCES 2 User's Manual, Version 1. March 1987..
Cox, B. "Message/Object Programming: An Evolutionary Change in Programming Technology,"
IEEE Software, 1,1, Jan. 1984,SO-61.
Jordan, H. "Structuring Parallel Algorithms in an MIMD, Shared Memory Environment," Parallel
Computing, 3.2, May 1986,93-110.
Mehrotra, P. and T. Pratt "Language Concepts for Distributed Processing of Large Arrays," ACM
Symp. on Principles of Distributed Computing, Ottawa, Aug. 1982, 19-28.

1985,7-20.

July 1984.27-36.

[lo] Jones. A. and P. Schwan "Experience Using Multiprocessor Architectures -- A Status Report,"
ACM Computing Surveys, 12.3, June 1980,121-166.

Figure 1

PISCES 2 VIRTUAL MACHINE ORGANIZATION

b

CLUSTER 1

Slots I Task controller <--I Intra-
User task cluster
User task Network

<not in use>

I CLUSTER 2

Slots

Disk 0

-User
Task
User
User

controller <--
controller <-

<not in use>

Message-
passing

I
4

Network

CLUSTER 3

User task cluster

Standard Bibliographic Page

ICASE Report No. 87-38

THE PISCES 2 PARALLEL PROGRAMMING ENVIRONMENT
1. Title and Subtitle

I. Report No. NASA CR-178327 12. Government Accession No. 13. Recipient's Catalog No.

5. Report Date

J u l y 1987
6. Performing Organization Code

#. erfor ing Org izatio Name and Address
f n s t r f t u t e ?or fomputer Appl ica t ions i n Science

r. Author(s)

Terrence W. P r a t t

10. Work Unit No.

505-90-21-01
and Engineer ing

Mail Stop 132C, NASA Langley Research Center
11. Contract or Grant No. I NAS1-18107

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

r rt

Nat iona l Aeronautics and Space Adminis t ra t ion
Washington, D.C. 20546

Langley Technica l Monitor: Submitted t o t h e Proc. 1987
J. C. South I n t e r n a t . Conf. on P a r a l l e l

F i n a l Report

15. Supplementary Notes

Process ing

L6. Abstract

PISCES 2 is a programming environment f o r s c i e n t i f i c and engineer ing
computations on MIMD para l le l computers. It is c u r r e n t l y implemented on a
F l e x i b l e FLEX/32 at NASA Langley, a 20 processor machine wi th both shared and
l o c a l memories. The environment provides an extended For t r an f o r a p p l i c a t i o n s
programming, a "configurat ion" environment f o r s e t t i n g up a run on t h e p a r a l l e l
machine, and a run-time environment f o r monitor ing and c o n t r o l l i n g program
execut ion. This paper d e s c r i b e s t h e o v e r a l l des ign of t h e system and i t s imple-
mentat ion on t h e FLEX/32. Emphasis is placed on s e v e r a l novel a s p e c t s of t h e
design: t h e use of a c a r e f u l l y def ined v i r t u a l machine, programmer c o n t r o l of
t h e mapping of v i r t u a l machine t o a c t u a l hardware, "forces" f o r medium-
g r a n u l a r i t y pa ra l l e l i sm, and "windows" f o r p a r a l l e l d i s t r i b u t i o n of data . Some
p re l imina ry measurements of s t o r a g e use are included.

17. Key Words (Suggested by Authors(s))

p a r a l l e l computers, p a r a l l e l
programming, programming environments

19. Security Classif.(of this report) 120. Securit

18. Distribution Statement

61 - Computer Programming and

62 - Computer Systems
Software

Unc las s i f i ed - unl imi ted
Classif.(of this page) I 21. No. of Pages I 22. Price . . . ~.

Unclas s i f i ed I Unclas s i f i ed I 15 I A02

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

~~
~~

~~

